Dysbiosis signature of fecal microbiota in colorectal cancer patients

From BugSigDB
Reviewed Marked as Reviewed by Shaimaa Elsafoury on 2021/02/09
study design
Citation
PMID PubMed identifier for scientific articles.
DOI Digital object identifier for electronic documents.
URI
Authors
Wu N, Yang X, Zhang R, Li J, Xiao X, Hu Y, Chen Y, Yang F, Lu N, Wang Z, Luan C, Liu Y, Wang B, Xiang C, Wang Y, Zhao F, Gao GF, Wang S, Li L, Zhang H, Zhu B
Journal
Microbial ecology
Year
2013
The human gut microbiota is a complex system that is essential to the health of the host. Increasing evidence suggests that the gut microbiota may play an important role in the pathogenesis of colorectal cancer (CRC). In this study, we used pyrosequencing of the 16S rRNA gene V3 region to characterize the fecal microbiota of 19 patients with CRC and 20 healthy control subjects. The results revealed striking differences in fecal microbial population patterns between these two groups. Partial least-squares discriminant analysis showed that 17 phylotypes closely related to Bacteroides were enriched in the gut microbiota of CRC patients, whereas nine operational taxonomic units, represented by the butyrate-producing genera Faecalibacterium and Roseburia, were significantly less abundant. A positive correlation was observed between the abundance of Bacteroides species and CRC disease status (R = 0.462, P = 0.046 < 0.5). In addition, 16 genera were significantly more abundant in CRC samples than in controls, including potentially pathogenic Fusobacterium and Campylobacter species at genus level. The dysbiosis of fecal microbiota, characterized by the enrichment of potential pathogens and the decrease in butyrate-producing members, may therefore represent a specific microbial signature of CRC. A greater understanding of the dynamics of the fecal microbiota may assist in the development of novel fecal microbiome-related diagnostic tools for CRC.

Experiment 1


Reviewed Marked as Reviewed by Shaimaa Elsafoury on 2021/02/09

Curated date: 2021/01/10

Curator: WikiWorks

Revision editor(s): WikiWorks

Subjects

Location of subjects
China
Host species Species from which microbiome was sampled. Contact us to have more species added.
Homo sapiens
Body site Anatomical site where microbial samples were extracted from according to the Uber Anatomy Ontology
Feces Cow dung,Cow pat,Droppings,Dung,Excrement,Excreta,Faeces,Fecal material,Fecal matter,Fewmet,Frass,Guano,Matières fécales@fr,Merde@fr,Ordure,Partie de la merde@fr,Piece of shit,Porción de mierda@es,Portion of dung,Portion of excrement,Portion of faeces,Portion of fecal material,Portion of fecal matter,Portion of feces,Portion of guano,Portion of scat,Portionem cacas,Scat,Spoor,Spraint,Stool,Teil der fäkalien@de,Feces
Condition The experimental condition / phenotype studied according to the Experimental Factor Ontology
colorectal cancer cancer of colorectum,cancer of large bowel,cancer of large intestine,cancer of the large bowel,colon cancer,colorectal cancer,colorectum cancer,CRC,large intestine cancer,malignant colorectal neoplasm,malignant colorectal tumor,malignant colorectum neoplasm,malignant large bowel neoplasm,malignant large bowel tumor,malignant large intestine neoplasm,malignant large intestine tumor,malignant neoplasm of colorectum,malignant neoplasm of large bowel,malignant neoplasm of large intestine,malignant neoplasm of the large bowel,malignant neoplasm of the large intestine,malignant tumor of large bowel,malignant tumor of large intestine,malignant tumor of the large bowel,malignant tumor of the large intestine
Group 0 name Corresponds to the control (unexposed) group for case-control studies
Healthy controls
Group 1 name Corresponds to the case (exposed) group for case-control studies
CRC patients
Group 0 sample size Number of subjects in the control (unexposed) group
20
Group 1 sample size Number of subjects in the case (exposed) group
19
Antibiotics exclusion Number of days without antibiotics usage (if applicable) and other antibiotics-related criteria used to exclude participants (if any)
3 months

Lab analysis

Sequencing type
16S
16S variable region One or more hypervariable region(s) of the bacterial 16S gene
V3
Sequencing platform Manufacturer and experimental platform used for quantifying microbial abundance
Roche454

Statistical Analysis

Statistical test
Mann-Whitney (Wilcoxon)
Significance threshold p-value or FDR threshold used for differential abundance testing (if any)
0.05
MHT correction Have statistical tests be corrected for multiple hypothesis testing (MHT)?
No
Matched on Factors on which subjects have been matched on in a case-control study
sex, age, body mass index

Alpha Diversity

Shannon Estimator of species richness and species evenness: more weight on species richness
unchanged
Chao1 Abundance-based estimator of species richness
unchanged

Signature 1

Reviewed Marked as Reviewed by Fatima on 2021/07/28

Curated date: 2021/01/10

Curator: Shaimaa Elsafoury

Revision editor(s): Fatima, WikiWorks

Source: Figure 3

Description: Cladogram of Colorectal cancer and healthy microbiota

Abundance in Group 1: increased abundance in CRC patients

NCBI Quality ControlLinks
Anaerococcus
Campylobacter
Campylobacteraceae
Eubacteriaceae
Eubacterium
Fastidiosipila
Fusobacteriaceae
Fusobacteriia
Fusobacterium
Gemella
Holdemania
Kingella
Leptotrichia
Odoribacter
Oscillibacter
Parabacteroides
Parvimonas
Peptostreptococcus
Porphyromonadaceae
Porphyromonas
Solobacterium
Staphylococcaceae
Tissierellia

Revision editor(s): Fatima, WikiWorks

Signature 2

Reviewed Marked as Reviewed by Shaimaa Elsafoury on 2021/02/09

Curated date: 2021/01/10

Curator: Shaimaa Elsafoury

Revision editor(s): WikiWorks

Source: Figure 3

Description: Cladogram of Colorectal cancer and healthy microbiota

Abundance in Group 1: decreased abundance in CRC patients

NCBI Quality ControlLinks
Leuconostoc
Streptococcus

Revision editor(s): WikiWorks