Intestinal microbiota changes in Graves' disease: a prospective clinical study

From BugSigDB
Needs review
Citation
PMID PubMed identifier for scientific articles.
DOI Digital object identifier for electronic documents.
URI Uniform resource identifier for web resources.
Authors
Yan HX, An WC, Chen F, An B, Pan Y, Jin J, Xia XP, Cui ZJ, Jiang L, Zhou SJ, Jin HX, Ou XH, Huang W, Hong TP, Lyu ZH
Journal
Bioscience reports
Year
2020
Keywords:
Case-control, Grave's disease (GD), Hyperthyroidism, Intestinal microbiota, Prospective, Thyroid-stimulating antibodies (TSAb)
Graves' disease (GD) occurs due to an autoimmune dysfunction of thyroid gland cells, leading to manifestations consistent with hyperthyroidism. Various studies have confirmed the link between autoimmune conditions and changes in the composition of intestinal microbial organisms. However, few studies have assessed the relationship between the GD and the changes in intestinal microbiota. Therefore, the present study aimed to investigate changes in intestinal flora that may occur in the setting of GD. Thirty-nine patients with GD and 17 healthy controls were enrolled for fecal sample collection. 16S rRNA sequencing was used to analyze the diversity and composition of the intestinal microbiota. High-throughput sequencing of 16S rRNA genes of intestinal flora was performed on Illumina Hiseq2500 platform. Comparing to healthy individuals, the number of Bacilli, Lactobacillales, Prevotella, Megamonas and Veillonella strains were increased, whereas the number of Ruminococcus, Rikenellaceae and Alistipes strains were decreased among patients with GD. Furthermore, patients with GD showed a decrease in intestinal microbial diversity. Therefore, it indicates that the diversity of microbial strains is significantly reduced in GD patients, and patients with GD will undergo significant changes in intestinal microbiota, by comparing the intestinal flora of GD and healthy controls. These conclusions are expected to provide a preliminary reference for further researches on the interaction mechanism between intestinal flora and GD.

Experiment 1


Needs review

Curated date: 2025/07/24

Curator: Aleru Divine

Revision editor(s): Aleru Divine

Subjects

Location of subjects
China
Host species Species from which microbiome was sampled. Contact us to have more species added.
Homo sapiens
Body site Anatomical site where microbial samples were extracted from according to the Uber Anatomy Ontology
Feces Cow dung,Cow pat,Droppings,Dung,Excrement,Excreta,Faeces,Fecal material,Fecal matter,Fewmet,Frass,Guano,Matières fécales@fr,Merde@fr,Ordure,Partie de la merde@fr,Piece of shit,Porción de mierda@es,Portion of dung,Portion of excrement,Portion of faeces,Portion of fecal material,Portion of fecal matter,Portion of feces,Portion of guano,Portion of scat,Portionem cacas,Scat,Spoor,Spraint,Stool,Teil der fäkalien@de,Feces,feces
Condition The experimental condition / phenotype studied according to the Experimental Factor Ontology
Graves disease Basedow disease,Basedow's disease,exophthalmic goiter,Flajani-Basedow-Graves disease,grave's disease,Graves disease,Graves' disease,Graves' hyperthyroidism,parry disease,toxic diffuse goiter,graves disease
Group 0 name Corresponds to the control (unexposed) group for case-control studies
Healthy Controls (HCs)
Group 1 name Corresponds to the case (exposed) group for case-control studies
Graves’ disease (GD)
Group 1 definition Diagnostic criteria applied to define the specific condition / phenotype represented in the case (exposed) group
Patients diagnosed with Graves’ disease (GD)
Group 0 sample size Number of subjects in the control (unexposed) group
17
Group 1 sample size Number of subjects in the case (exposed) group
39
Antibiotics exclusion Number of days without antibiotics usage (if applicable) and other antibiotics-related criteria used to exclude participants (if any)
Three months

Lab analysis

Sequencing type
16S
16S variable region One or more hypervariable region(s) of the bacterial 16S gene
Not specified
Sequencing platform Manufacturer and experimental platform used for quantifying microbial abundance
Illumina

Statistical Analysis

Data transformation Data transformation applied to microbial abundance measurements prior to differential abundance testing (if any).
relative abundances
Statistical test
LEfSe
Significance threshold p-value or FDR threshold used for differential abundance testing (if any)
0.05
MHT correction Have statistical tests be corrected for multiple hypothesis testing (MHT)?
Yes
LDA Score above Threshold for the linear discriminant analysis (LDA) score for studies using the popular LEfSe tool
2
Matched on Factors on which subjects have been matched on in a case-control study
age, body mass index, sex

Alpha Diversity

Shannon Estimator of species richness and species evenness: more weight on species richness
decreased
Chao1 Abundance-based estimator of species richness
unchanged
Simpson Estimator of species richness and species evenness: more weight on species evenness
unchanged
Richness Number of species
unchanged

Signature 1

Needs review

Curated date: 2025/07/24

Curator: Aleru Divine

Revision editor(s): Aleru Divine

Source: Table 2

Description: LEfSe results of significant features

Abundance in Group 1: increased abundance in Graves’ disease (GD)

NCBI Quality ControlLinks
Bacilli
Prevotella
Megamonas
Veillonella
Lactobacillales

Revision editor(s): Aleru Divine